Nonantithrombotic medical options in acute coronary syndromes: old agents and new lines on the horizon.

From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (V.S., P.T.O.); Division of Cardiology, Department of Medicine, Albany Stratton Veteran's Affairs Medical Centre and Albany Medical College, NY (W.E.B.); and Division of Cardiology, University of North Carolina, Chapel Hill (S.C.S.). From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (V.S., P.T.O.); Division of Cardiology, Department of Medicine, Albany Stratton Veteran's Affairs Medical Centre and Albany Medical College, NY (W.E.B.); and Division of Cardiology, University of North Carolina, Chapel Hill (S.C.S.). pogara@partners.org.

Circulation research. 2014;(12):1944-58

Abstract

Acute coronary syndromes (ACS) constitute a spectrum of clinical presentations ranging from unstable angina and non-ST-segment elevation myocardial infarction to ST-segment myocardial infarction. Myocardial ischemia in this context occurs as a result of an abrupt decrease in coronary blood flow and resultant imbalance in the myocardial oxygen supply-demand relationship. Coronary blood flow is further compromised by other mechanisms that increase coronary vascular resistance or reduce coronary driving pressure. The goals of treatment are to decrease myocardial oxygen demand, increase coronary blood flow and oxygen supply, and limit myocardial injury. Treatments are generally divided into disease-modifying agents or interventions that improve hard clinical outcomes and other strategies that can reduce ischemia. In addition to traditional drugs such as β-blockers and inhibitors of the renin-angiotensin-aldosterone system, newer agents have expanded the number of molecular pathways targeted for treatment of ACS. Ranolazine, trimetazidine, nicorandil, and ivabradine are medications that have been shown to reduce myocardial ischemia through diverse mechanisms and have been tested in limited fashion in patients with ACS. Attenuating the no-reflow phenomenon and reducing the injury compounded by acute reperfusion after a period of coronary occlusion are active areas of research. Additionally, interventions aimed at ischemic pre- and postconditioning may be useful means by which to limit myocardial infarct size. Trials are also underway to examine altered metabolic and oxygen-related pathways in ACS. This review will discuss traditional and newer anti-ischemic therapies for patients with ACS, exclusive of revascularization, antithrombotic agents, and the use of high-intensity statins.

Methodological quality

Publication Type : Review

Metadata